Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 640: 27-36, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29331688

RESUMO

Coproheme decarboxylases (ChdCs) are enzymes responsible for the catalysis of the terminal step in the coproporphyrin-dependent heme biosynthesis pathway. Phylogenetic analyses confirm that the gene encoding for ChdCs is widespread throughout the bacterial world. It is found in monoderm bacteria (Firmicutes, Actinobacteria), diderm bacteria (e. g. Nitrospirae) and also in Archaea. In order to test phylogenetic prediction ChdC representatives from all clades were expressed and examined for their coproheme decarboxylase activity. Based on available biochemical data and phylogenetic analyses a sequence motif (-Y-P-M/F-X-K/R-) is defined for ChdCs. We show for the first time that in diderm bacteria an active coproheme decarboxylase is present and that the archaeal ChdC homolog from Sulfolobus solfataricus is inactive and its physiological role remains elusive. This shows the limitation of phylogenetic prediction of an enzymatic activity, since the identified sequence motif is equally conserved across all previously defined clades.


Assuntos
Carboxiliases/química , Carboxiliases/classificação , Coproporfirinas/química , Sequência de Aminoácidos , Carboxiliases/genética , Catálise , Filogenia , Sulfolobus solfataricus/enzimologia
2.
Science ; 357(6354): 903-907, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860382

RESUMO

Although many organisms capture or respond to sunlight, few enzymes are known to be driven by light. Among these are DNA photolyases and the photosynthetic reaction centers. Here, we show that the microalga Chlorella variabilis NC64A harbors a photoenzyme that acts in lipid metabolism. This enzyme belongs to an algae-specific clade of the glucose-methanol-choline oxidoreductase family and catalyzes the decarboxylation of free fatty acids to n-alkanes or -alkenes in response to blue light. Crystal structure of the protein reveals a fatty acid-binding site in a hydrophobic tunnel leading to the light-capturing flavin adenine dinucleotide (FAD) cofactor. The decarboxylation is initiated through electron abstraction from the fatty acid by the photoexcited FAD with a quantum yield >80%. This photoenzyme, which we name fatty acid photodecarboxylase, may be useful in light-driven, bio-based production of hydrocarbons.


Assuntos
Alcanos/metabolismo , Alcenos/metabolismo , Biocatálise , Carboxiliases/metabolismo , Chlorella/enzimologia , Ácidos Graxos/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Carboxiliases/química , Carboxiliases/classificação , Carboxiliases/efeitos da radiação , Flavina-Adenina Dinucleotídeo/metabolismo , Luz , Metabolismo dos Lipídeos , Oxirredutases/química , Oxirredutases/classificação , Oxirredutases/efeitos da radiação , Processos Fotoquímicos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/efeitos da radiação
3.
Mol Phylogenet Evol ; 114: 401-414, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28694102

RESUMO

DMSP (dimethylsulfoniopropionate) is an ecologically important sulfur metabolite commonly produced by marine algae and by some higher plant lineages, including the polyploid salt marsh genus Spartina (Poaceae). The molecular mechanisms and genes involved in the DMSP biosynthesis pathways are still unknown. In this study, we performed comparative analyses of DMSP amounts and molecular phylogenetic analyses to decipher the origin of DMSP in Spartina that represents one of the major source of terrestrial DMSP in coastal marshes. DMSP content was explored in 14 Spartina species using 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). Putative genes encoding the four enzymatic steps of the DMSP biosynthesis pathway in Spartina were examined and their evolutionary dynamics were studied. We found that the hexaploid lineage containing S. alterniflora, S. foliosa and S. maritima and their derived hybrids and allopolyploids are all able to produce DMSP, in contrast to species in the tetraploid clade. Thus, examination of DMSP synthesis in a phylogenetic context implicated a single origin of this physiological innovation, which occurred in the ancestor of the hexaploid Spartina lineage, 3-6MYA. Candidate genes specific to the Spartina DMSP biosynthesis pathway were also retrieved from Spartina transcriptomes, and provide a framework for future investigations to decipher the molecular mechanisms involved in this plant phenotypic novelty that has major ecological impacts in saltmarsh ecosystems.


Assuntos
Evolução Molecular , Poaceae/metabolismo , Compostos de Sulfônio/metabolismo , Aldeído Desidrogenase/classificação , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Carboxiliases/classificação , Carboxiliases/genética , Carboxiliases/metabolismo , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metiltransferases/classificação , Metiltransferases/genética , Metiltransferases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/classificação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Filogenia , Poaceae/classificação , Poaceae/genética , Poliploidia , Compostos de Sulfônio/análise
4.
J Biochem ; 161(4): 389-398, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003434

RESUMO

l-Methionine decarboxylase (MetDC) from Streptomyces sp. 590 depends on pyridoxal 5'-phosphate and catalyzes the non-oxidative decarboxylation of l-methionine to produce 3-methylthiopropylamine and carbon dioxide. MetDC gene (mdc) was determined to consist of 1,674 bp encoding 557 amino acids, and the amino acid sequence is similar to that of l-histidine decarboxylases and l-valine decarboxylases from Streptomyces sp. strains. The mdc gene was cloned and recombinant MetDC was heterologously expressed by Escherichia coli. The purification of recombinant MetDC was carried out by DEAE-Toyopearl and Ni-NTA agarose column chromatography. The recombinant enzyme was homodimeric with a molecular mass of 61,000 Da and showed optimal activity between 45 to 55 °C and at pH 6.6, and the stability below 30 °C and between pH 4.6 to 7.0. l-Methionine and l-norleucine were good substrates for MetDC. The Michaelis constants for l-methionine and l-norleucine were 30 and 73 mM, respectively. The recombinant MetDC (0.50 U/ml) severely inhibited growth of human tumour cells A431 (epidermoid ovarian carcinoma cell line) and MDA-MB-231 (breast cancer cell line), however showed relatively low cytotoxicity for human normal cell NHDF-Neo (dermal fibroblast cell line from neonatal foreskin). This study revealed the properties of the gene and the protein sequence of MetDC for the first time.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxiliases/metabolismo , Proteínas Recombinantes/metabolismo , Streptomyces/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Dióxido de Carbono/metabolismo , Carboxiliases/classificação , Carboxiliases/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metionina/metabolismo , Peso Molecular , Filogenia , Propilaminas/metabolismo , Multimerização Proteica , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Espectrofotometria , Streptomyces/genética , Especificidade por Substrato , Temperatura
5.
J Mol Microbiol Biotechnol ; 26(1-3): 152-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26958851

RESUMO

Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions.


Assuntos
Acetona/química , Acetona/metabolismo , Bactérias Anaeróbias/metabolismo , Cetonas/química , Cetonas/metabolismo , Anaerobiose , Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/genética , Carboxiliases/classificação , Carboxiliases/genética , Carboxiliases/metabolismo , Redes e Vias Metabólicas
6.
J Biol Chem ; 289(10): 6809-6824, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24429285

RESUMO

Toxoplasma gondii is a highly prevalent obligate intracellular parasite of the phylum Apicomplexa, which also includes other parasites of clinical and/or veterinary importance, such as Plasmodium, Cryptosporidium, and Eimeria. Acute infection by Toxoplasma is hallmarked by rapid proliferation in its host cells and requires a significant synthesis of parasite membranes. Phosphatidylethanolamine (PtdEtn) is the second major phospholipid class in T. gondii. Here, we reveal that PtdEtn is produced in the parasite mitochondrion and parasitophorous vacuole by decarboxylation of phosphatidylserine (PtdSer) and in the endoplasmic reticulum by fusion of CDP-ethanolamine and diacylglycerol. PtdEtn in the mitochondrion is synthesized by a phosphatidylserine decarboxylase (TgPSD1mt) of the type I class. TgPSD1mt harbors a targeting peptide at its N terminus that is required for the mitochondrial localization but not for the catalytic activity. Ablation of TgPSD1mt expression caused up to 45% growth impairment in the parasite mutant. The PtdEtn content of the mutant was unaffected, however, suggesting the presence of compensatory mechanisms. Indeed, metabolic labeling revealed an increased usage of ethanolamine for PtdEtn synthesis by the mutant. Likewise, depletion of nutrients exacerbated the growth defect (∼56%), which was partially restored by ethanolamine. Besides, the survival and residual growth of the TgPSD1mt mutant in the nutrient-depleted medium also indicated additional routes of PtdEtn biogenesis, such as acquisition of host-derived lipid. Collectively, the work demonstrates a metabolic cooperativity between the parasite organelles, which ensures a sustained lipid synthesis, survival and growth of T. gondii in varying nutritional milieus.


Assuntos
Carboxiliases/metabolismo , Mitocôndrias/metabolismo , Fosfatidiletanolaminas/biossíntese , Proteínas de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Carboxiliases/classificação , Carboxiliases/genética , Sobrevivência Celular , Cistina Difosfato/análogos & derivados , Cistina Difosfato/metabolismo , Diglicerídeos/metabolismo , Etanolaminas/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/metabolismo
7.
Biochemistry ; 52(26): 4492-506, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23758195

RESUMO

The nonproteinogenic amino acid enduracididine is a critical component of the mannopeptimycins, cyclic glycopeptide antibiotics with activity against drug-resistant pathogens, including methicillin-resistant Staphylococcus aureus. Enduracididine is produced in Streptomyces hygroscopicus by three enzymes, MppP, MppQ, and MppR. On the basis of primary sequence analysis, MppP and MppQ are pyridoxal 5'-phosphate-dependent aminotransferases; MppR shares a low, but significant, level of sequence identity with acetoacetate decarboxylase. The exact reactions catalyzed by each enzyme and the intermediates involved in the route to enduracididine are currently unknown. Herein, we present biochemical and structural characterization of MppR that demonstrates a catalytic activity for this enzyme and provides clues about its role in enduracididine biosynthesis. Bioinformatic analysis shows that MppR belongs to a previously uncharacterized family within the acetoacetate decarboxylase-like superfamily (ADCSF) and suggests that MppR-like enzymes may catalyze reactions diverging from the well-characterized, prototypical ADCSF decarboxylase activity. MppR shares a high degree of structural similarity with acetoacetate decarboxylase, though the respective quaternary structures differ markedly and structural differences in the active site explain the observed loss of decarboxylase activity. The crystal structure of MppR in the presence of a mixture of pyruvate and 4-imidazolecarboxaldehyde shows that MppR catalyzes the aldol condensation of these compounds and subsequent dehydration. Surprisingly, the structure of MppR in the presence of "4-hydroxy-2-ketoarginine" shows the correct 4R enantiomer of "2-ketoenduracididine" bound to the enzyme. These data, together with bioinformatic analysis of MppR homologues, identify a novel family within the acetoacetate decarboxylase-like superfamily with divergent active site structure and, consequently, biochemical function.


Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Streptomyces/enzimologia , Sequência de Aminoácidos , Carboxiliases/classificação , Catálise , Domínio Catalítico , Biologia Computacional/métodos , Cristalografia por Raios X , Peptídeos Cíclicos/biossíntese , Conformação Proteica , Relação Estrutura-Atividade
8.
J Bacteriol ; 189(21): 7626-33, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17766418

RESUMO

Azospirillum brasilense belongs to the plant growth-promoting rhizobacteria with direct growth promotion through the production of the phytohormone indole-3-acetic acid (IAA). A key gene in the production of IAA, annotated as indole-3-pyruvate decarboxylase (ipdC), has been isolated from A. brasilense, and its regulation was reported previously (A. Vande Broek, P. Gysegom, O. Ona, N. Hendrickx, E. Prinsen, J. Van Impe, and J. Vanderleyden, Mol. Plant-Microbe Interact. 18:311-323, 2005). An ipdC-knockout mutant was found to produce only 10% (wt/vol) of the wild-type IAA production level. In this study, the encoded enzyme is characterized via a biochemical and phylogenetic analysis. Therefore, the recombinant enzyme was expressed and purified via heterologous overexpression in Escherichia coli and subsequent affinity chromatography. The molecular mass of the holoenzyme was determined by size-exclusion chromatography, suggesting a tetrameric structure, which is typical for 2-keto acid decarboxylases. The enzyme shows the highest kcat value for phenylpyruvate. Comparing values for the specificity constant kcat/Km, indole-3-pyruvate is converted 10-fold less efficiently, while no activity could be detected with benzoylformate. The enzyme shows pronounced substrate activation with indole-3-pyruvate and some other aromatic substrates, while for phenylpyruvate it appears to obey classical Michaelis-Menten kinetics. Based on these data, we propose a reclassification of the ipdC gene product of A. brasilense as a phenylpyruvate decarboxylase (EC 4.1.1.43).


Assuntos
Azospirillum brasilense/enzimologia , Carboxiliases/metabolismo , Ácidos Indolacéticos/metabolismo , Sequência de Aminoácidos , Azospirillum brasilense/genética , Proteínas de Bactérias/metabolismo , Carboxiliases/classificação , Carboxiliases/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Cinética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
9.
Mol Biol Evol ; 24(1): 79-89, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16997906

RESUMO

Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) are involved in the biosynthesis of putrescine, which is the precursor of other polyamines in animals, plants, and bacteria. These pyridoxal-5'-phosphate-dependent decarboxylases belong to the alanine racemase (AR) structural family together with diaminopimelate decarboxylase (DapDC), which catalyzes the final step of lysine biosynthesis in bacteria. We have constructed a multiple-sequence alignment of decarboxylases in the AR structural family and, based on the alignment, inferred phylogenetic trees. The phylogenetic tree consists of 3 distinct clades formed by ADC, DapDC, and ODC that diverged from an ancestral decarboxylase. The ancestral decarboxylase probably was able to recognize several substrates, and in archaea and bacteria, ODC may have retained the ability to bind other amino acids. Previously, a paralogue of ODC has been proposed to account for ADC activity detected in mammalian cells. According to our results, this appears unlikely, emphasizing the need for more caution in functional assignment made using sequence data and illustrating the continuing value of phylogenetic analysis in clarifying relationships and putative functions.


Assuntos
Alanina Racemase/genética , Carboxiliases/química , Carboxiliases/genética , Evolução Molecular , Filogenia , Alanina Racemase/química , Alanina Racemase/metabolismo , Algoritmos , Animais , Sítios de Ligação , Carboxiliases/classificação , Carboxiliases/metabolismo , Humanos , Modelos Moleculares , Ornitina Descarboxilase/química , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
10.
J Biol Chem ; 281(3): 1532-46, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16301313

RESUMO

AAA+ ATPases are ubiquitous proteins that employ the energy obtained from ATP hydrolysis to remodel proteins, DNA, or RNA. The MoxR family of AAA+ proteins is widespread throughout bacteria and archaea but is largely uncharacterized. Limited work with specific members has suggested a potential role as molecular chaperones involved in the assembly of protein complexes. As part of an effort aimed at determining the function of novel AAA+ chaperones in Escherichia coli, we report the characterization of a representative member of the MoxR family, YieN, which we have renamed RavA (regulatory ATPase variant A). We show that the ravA gene exists on an operon with another gene encoding a protein, YieM, of unknown function containing a Von Willebrand Factor Type A domain. RavA expression is under the control of the sigmaS transcription factor, and its levels increase toward late log/early stationary phase, consistent with its possible role as a general stress-response protein. RavA functions as an ATPase and forms hexameric oligomers. Importantly, we demonstrate that RavA interacts strongly with inducible lysine decarboxylase (LdcI or CadA) forming a large cage-like structure consisting of two LdcI decamers linked by a maximum of five RavA oligomers. Surprisingly, the activity of LdcI does not appear to be affected by binding to RavA in a number of in vitro and in vivo assays, however, complex formation results in the stimulation of RavA ATPase activity. Data obtained suggest that the RavA-LdcI interaction may be important for the regulation of RavA activity against its targets.


Assuntos
Adenosina Trifosfatases/metabolismo , Carboxiliases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/isolamento & purificação , Sequência de Aminoácidos , Carboxiliases/classificação , Carboxiliases/isolamento & purificação , Cromatografia em Gel , Sequência Conservada , Indução Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/isolamento & purificação , Dados de Sequência Molecular , Filogenia
11.
Genomics ; 86(3): 342-51, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15979273

RESUMO

Bacterial non-oxidative, reversible multi subunit hydroxyarylic acid decarboxylases/phenol carboxylases are encoded by the three clustered genes, B, C, and D, of approximately 0.6, 1.4, and 0.2 kb, respectively. There are more than 160 homologues in the database with significant similarity to gene B (homology to ubiX) and C (ubiD) distributed in all three microbial domains, however, homologues to gene D, are not numerous ( approximately 15). The occurrence of the entire BCD gene cluster encoding for either identified or presumptive hydroxyarylic acid decarboxylase to date has been revealed in Sedimentibacter hydroxybenzoicus (unique genes arrangement CDB), Streptomyces sp. D7, Bacillus subtilis, B. licheniformis, E. coli O157:H7, Klebsiella pneumoniae, Enterobacter cloacae, Shigella dysenteriae, Salmonella enterica, S. paratyphi, S. typhimurium, S. bongori, and S. diarizonae. The corresponding genes from S. hydroxybenzoicus, B. subtilis, Streptomyces sp. D7, E. coli O157:H7, K. pneumoniae, and S. typhimurium were cloned and expressed in E. coli DH5alpha (void of analogous genes), and shown to code for proteins exhibiting non-oxidative hydroxyarylic acid decarboxylase activity.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Carboxiliases/genética , Genes Bacterianos , Filogenia , Bactérias/classificação , Proteínas de Bactérias/genética , Sequência de Bases , Carboxiliases/classificação , Dados de Sequência Molecular
12.
Biochemistry ; 42(44): 12721-33, 2003 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-14596586

RESUMO

Malic enzyme is a tetrameric protein with double dimer structure in which the dimer interface is more intimately contacted than the tetramer interface. Each monomeric unit of the enzyme is composed of four structural domains, which show a different folding topology from those of the other oxidative decarboxylases. The active center is located at the interface between domains B and C. For human mitochondrial malic enzyme, there is an exo nucleotide-binding site for the inhibitor ATP and an allosteric site for the activator fumarate, located at the tetramer and dimer interfaces, respectively. Crystal structures of the enzyme in various complexed forms indicate that the enzyme may exist in equilibrium among two open and two closed forms. Interconversion among these forms involves rigid-body movements of the four structural domains. Substrate binding at the active site shifts the open form to the closed form that represents an active site closure. Fumarate binding at the allosteric site induces the interconversion between forms I and II, which is mediated by the movements of domains A and D. Structures of malic enzyme from different sources are compared with an emphasis on the differences and their implications to structure-function relationships. The binding modes of the substrate, product, cofactors, and transition-state analogue at the active site, as well as ATP and fumarate at the exo site and allosteric site, respectively, provide a clear account for the catalytic mechanism, nucleotide specificities, allosteric regulation, and functional roles of the quaternary structure. The proposed catalytic mechanism involves tyrosine-112 and lysine-183 as the general acid and base, respectively. In addition, a divalent metal ion (Mn(2+) or Mg(2+)) is essential in helping the catalysis. Binding of the metal ion also plays an important role in stabilizing the quaternary structural integrity of the enzyme.


Assuntos
Malato Desidrogenase/química , Malato Desidrogenase/classificação , Sequência de Aminoácidos , Animais , Carboxiliases/química , Carboxiliases/classificação , Carboxiliases/metabolismo , Humanos , Malato Desidrogenase/metabolismo , Dados de Sequência Molecular , Oxirredução , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
13.
J Bacteriol ; 182(23): 6732-41, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11073919

RESUMO

Lysine decarboxylase (LDC; EC 4.1.1.18) from Selenomonas ruminantium comprises two identical monomeric subunits of 43 kDa and has decarboxylating activities toward both L-lysine and L-ornithine with similar K(m) and V(max) values (Y. Takatsuka, M. Onoda, T. Sugiyama, K. Muramoto, T. Tomita, and Y. Kamio, Biosci. Biotechnol. Biochem. 62:1063-1069, 1999). Here, the LDC-encoding gene (ldc) of this bacterium was cloned and characterized. DNA sequencing analysis revealed that the amino acid sequence of S. ruminantium LDC is 35% identical to those of eukaryotic ornithine decarboxylases (ODCs; EC 4.1.1.17), including the mouse, Saccharomyces cerevisiae, Neurospora crassa, Trypanosoma brucei, and Caenorhabditis elegans enzymes. In addition, 26 amino acid residues, K69, D88, E94, D134, R154, K169, H197, D233, G235, G236, G237, F238, E274, G276, R277, Y278, K294, Y323, Y331, D332, C360, D361, D364, G387, Y389, and F397 (mouse ODC numbering), all of which are implicated in the formation of the pyridoxal phosphate-binding domain and the substrate-binding domain and in dimer stabilization with the eukaryotic ODCs, were also conserved in S. ruminantium LDC. Computer analysis of the putative secondary structure of S. ruminantium LDC showed that it is approximately 70% identical to that of mouse ODC. We identified five amino acid residues, A44, G45, V46, P54, and S322, within the LDC catalytic domain that confer decarboxylase activities toward both L-lysine and L-ornithine with a substrate specificity ratio of 0.83 (defined as the k(cat)/K(m) ratio obtained with L-ornithine relative to that obtained with L-lysine). We have succeeded in converting S. ruminantium LDC to form with a substrate specificity ratio of 58 (70 times that of wild-type LDC) by constructing a mutant protein, A44V/G45T/V46P/P54D/S322A. In this study, we also showed that G350 is a crucial residue for stabilization of the dimer in S. ruminantium LDC.


Assuntos
Carboxiliases/genética , Evolução Molecular , Genes Bacterianos , Ornitina Descarboxilase/genética , Selenomonas/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Carboxiliases/química , Carboxiliases/classificação , Carboxiliases/metabolismo , Clonagem Molecular , DNA Bacteriano , Lisina/metabolismo , Camundongos , Dados de Sequência Molecular , Ornitina/metabolismo , Ornitina Descarboxilase/classificação , Ornitina Descarboxilase/metabolismo , Conformação Proteica , Selenomonas/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Transcrição Gênica
14.
J Neurochem ; 54(3): 870-9, 1990 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2303816

RESUMO

Cysteine sulfinate decarboxylase (CSD), the putative biosynthetic enzyme for taurine, was purified 1,800-fold with a 1% yield from rat liver, where it was found to be 20-fold enriched compared with brain. The final fraction was homogeneous, as ascertained through sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reverse-phase HPLC. An antiserum was raised in the rabbit that (a) quantitatively immunoprecipitated CSD activity and (b) immunolabeled only one band (MW = 51,000) on an immunoblot from liver homogenate. Monoclonal antibodies were also raised that recognized the CSD protein and immunolabeled the same 51-kilodalton protein on an immunoblot from liver homogenate. In a brain extract, two CSD activities had been previously found and named CSDI and CSDII, according to their chromatographic elution patterns. We have compared the properties of CSDI from brain--the most likely enzyme involved in the biosynthesis of taurine in the brain, according to previous investigations-and CSD from liver: Both activities (a) were similarly eluted on ion-exchange and hydroxyapatite chromatographies, (b) showed the same elution pattern on gel filtration with an apparent native molecular weight of approximately 63,000, and (c) were immunoprecipitated in a strictly identical manner by the antiserum against liver CSD. Moreover, this antiserum as well as the monoclonal antibodies immunolabeled a single band (51 kilodaltons) on an immunoblot from brain CSD-enriched fraction or liver fraction. All these data show that CSDI from brain and liver CSD are the same monomeric enzyme. They also indicate that a specific antiserum against rat liver CSD has been raised that can be used for immunocytochemical visualization of CSD-containing cells in the brain.


Assuntos
Anticorpos Monoclonais/imunologia , Encéfalo/enzimologia , Carboxiliases/imunologia , Soros Imunes/imunologia , Fígado/enzimologia , Taurina/metabolismo , Animais , Carboxiliases/classificação , Carboxiliases/isolamento & purificação , Miocárdio/enzimologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...